Using a DIDSON to Estimate Salmon Escapement: Introduction

Walt Duffy, Matt Metheny, Zack Larson and Kerrie Pipal

Acknowledgements

- California Department of Fish and Game,
 Fisheries Restoration Grants Program
- Redwood State and National Parks
- Orick Chamber of Commerce
- U. S. Geological Survey
- Humboldt State University

History

- Hydro-acoustics and sonar used in a variety of applications
 - Stock assessments in lakes and reservoirs
 - Sport fishing
 - Mapping seafloor

History

- DIDSON technology developed for U. S. Navy by University of Washington, Applied Physics Laboratory to detect mines
 - Limpet Mine Imaging Sonar (LIMIS)
 - Dual–Frequency Identification Sonar (DIDSON)

Some DIDSON Applications

- Monitoring frequency of salmon redd construction relation to environmental variables.
- Predator-prey interactions in turbid water.
- Evaluating trawl by-catch.
- Estimating salmon escapement.
- Fish behavior

Salmon Escapement

- Alaska Department of Fish and Game adapted DIDSON technology to estimate escapement.
 - ADFG employs 27 DIDSON units for this purpose.
- Other federal, state and provincial agencies now using DIDSON for similar purposes.

How a DIDSON Works

- Components
- Concepts
- Specifications
- Resolution
- Deployment

Components

The acoustic lenses focus and form an acoustic image on the transducer array at the rear of the sonar. Electronics convert that acoustic image into a digital image on a computer screen.

Image interpretation

- Unlike scanning sonars that provide still images, DIDSON is a dual beam sonar that provides dynamic (video) images.
- Dual beam = 2 frequencies (1.1 and 1.8 MHz).
- The apparent observation view is perpendicular to the expected view.
 - Objects ensonified from the side appear to be viewed from the top
 - Objects ensonified from above appear to be viewed from the side.

11/18/2010

Image quality

- DIDSON produces high quality, almost photo quality, video acoustic images
- Operates at zero light and high turbidity.
- At right image of pipe and roots in Sacramento River.

11/18/2010

Data Interpretation is Intuitive

DIDSON

- Real time direction.
- Swimming behavior visible.
- Split-beam Sonar
 - "radar blips".
 - Not possible to determine direction.
 - Size is weakly related to target strength.

11/18/2010

Fish passage observation technology comparison

	Optical Camera	Acoustic Camera	Traditional Sonar
Display Resolution	500,000 pixels (video)	50,000 pixels (HF mode)	500 range data bins
Maximum Range (m)	< 1 (in turbid water)	12 (HF mode)	>50
Field-of-View (degrees)	77	29	6

Moursund, R. A., T. J. Carlson and R. D. Peters. 2003. A fisheries application of a dual-frequency identification sonar acoustic camera. ICES Journal of Marine Sciences 60:678-683.

11/18/2010

DIDSON Specifications

- Identification Mode
 - Operating Frequency 1.8 MHz
 - Beamwidth (two-way) 0.3 deg H by 14 deg V
 - Number of beams 96
 - Range 1 m to 15 m
- Detection Mode
 - Operating Frequency 1.1 MHz
 - Beamwidth (two-way) 0.6 deg H by 14 deg V
 - Number of Beams 48
 - Range 1 m to 35 m
- Both Modes
 - Field-of-view 29 deg
 - Sonar weight in air (300m) 7.7 kg (17 lbs); in water 0.7 kg (1.6 lbs)
 - Dimensions 30 cm by 20 cm by 17 cm (12-in. by 8-in. by 7-in.)

11/18/2010

DIDSON Resolution

11/18/2010

DIDSON Resolution

- Cross-range resolution: (range/2)/num_beams
- Down-range resolution: Window-Length/512
- Example: Range 30 m using a 40-m window Std LF
 - Cross-range resolution = 1500/48 = 31 cm
 - Down-range resolution = 4000/512 = 8
 cm
- Example: Range 2 m using a 1.25-m window Std HF
 - Cross-range resolution = 100/96 = 1 cm
 - Down-range resolution = 125/512 = 0.24
 cm

11/18/2010

Deployment

Pole mount

"H" mount

11/18/2010

Aiming to image objects

96 or 48 pulses skim along the surface sending back reflectance as a function of range and beam number.

The display maps the reflectances. Objects ensonified from the side appear to be seen from above and generally have an acoustic shadow.

11/18/2010

Data storage

```
Count Motion = Right to Left
Sub Opp Motion = FALSE
Correct TL = ENABLED
Background Sub = ENABLED
Detect Motion = ENABLED
```

*** Echogram Counting ***

Total	Frame#	Dir	R (m)	Theta	L(cm)	T(cm)	L/T	Aspect	MaxAre	a Time
1	35	Up	6.90	0.0	39.4	15.7	2.50	0.0	32	19:53:59
2	51	Up	5.38	0.0	51.4	12.2	4.20	0.0	47	19:54:01
3	191	Up	10.13	0.0	78.7	17.5	4.50	0.0	88	19:54:22
4	196	Up	9.45	0.0	73.3	19.2	3.81	0.0	71	19:54:22
5	235	Up	3.61	0.0	50.6	10.5	4.82	0.0	66	19:54:28
6	244	Up	3.95	0.0	74.5	19.2	3.87	0.0	208	19:54:29
7	248	Up	8.18	0.0	80.9	15.7	5.14	0.0	125	19:54:30
8	252	Up	8.51	0.0	79.8	15.7	5.07	0.0	97	19:54:30
9	255	Up	7.58	0.0	82.8	15.7	5.26	0.0	124	19:54:31
10	259	Up	7.18	0.0	83.8	15.7	5.33	0.0	114	19:54:31
11	261	Up	8.39	0.0	65.7	10.5	6.26	0.0	47	19:54:32
12	266	Up	7.90	0.0	82.3	15.7	5.23	0.0	116	19:54:32
13	269	Up	6.24	0.0	74.9	14.0	5.35	0.0	125	19:54:33

The fish statistics automatically store into a text file. One gets the total count, the frame in which a count was made, fish direction, range, length, and the time the fish passed the center beam.

11/18/2010

Discussion & Questions

11/18/2010