# Life Cycle Monitoring and DIDSON Cameras: Promise and Pitfalls

Walt Duffy and Matt Metheny





#### Outline of Presentation

- 1) Considerations in using DIDSON
- 2) DIDSON in the context of the Coastal Monitoring Plan
- 3) Estimating escapement using DIDSON
- 4) Biological data collected with DIDSON
- 5) Uncertainty with DIDSON and uncertainty with redd surveys



#### Considerations in using DIDSON

- Site selection
- Run timing
- River hydrology
- Security
- Data management
- Non-salmonids









#### **VSP Parameters and DIDSON**

| VSP Parameter             | Redd Counts | DIDSON         |
|---------------------------|-------------|----------------|
| Abundance (adult)         | Yes         | Yes            |
| Productivity (smolt)      | No          | Potential      |
| Spatial structure (adult) | Yes         | No             |
| Diversity (adult)         | Yes         | In part (time) |



#### **Error Sources**

- Incomplete coverage
- Missing hours/days
- Undetected fish
- Variation among reviewers
- Non-fish
- Sub-sampling



# Two Approaches to Estimating Escapement Using a DIDSON

- Total census
  - Applicable to small populations
- Sub-sampling
  - Used when population size is larger



#### Sub-Sample of Larger Populations

- Temptation is to conduct a total census.
  - However a total census is not practical and is not the best use of staff time.
- Sub-sampling temporally allows for:
  - An estimate of escapement.
  - Calculation of confidence intervals on the escapement estimate.
  - Evaluation of sub-sample size (number of minutes).



#### Uncertainty Related to Subsampling Effort

Confidence intervals for total fish passage estimated from different sampling rates.

Lilja et al. (2008). Fisheries Research 90:118-127.



#### Our Redwood Creek Experience



# Subsample Size & Error Rate in Redwood Creek



#### Run Timing in Redwood Creek



#### Size Distribution on Redwood creek



### Estimated Escapement to Redwood Creek - 2009/2010

| Species        | DIDSON | DSON Redd Surveys <sup>1</sup> |  |  |  |
|----------------|--------|--------------------------------|--|--|--|
|                |        |                                |  |  |  |
| Coho salmon    | 368    | 382                            |  |  |  |
| Chinook salmon | 2,444  | 520                            |  |  |  |
| Steelhead      | 550    | 436                            |  |  |  |

Redd survey data are from Ricker's (2011) estimate of redd numbers using simple random sample method and assuming 2 fish/redd.

# Comparison of DIDSON AND Live Fish Survey Estimates of Escapement to Redwood Creek

| Method                             | Coho        |             | Chinook     |             | Steelhead   |             |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                    | 2009<br>/10 | 2011<br>/12 | 2009<br>/10 | 2011<br>/12 | 2009<br>/10 | 2011<br>/12 |
| Logistic model (individual assign) | 321         | 1040        | 2488        | 1,216       | 12          | 130         |
| Logistic model (sum probability)   | 490         | 788         | 2,318       | 1,433       | 12          | 165         |
| Survey interval                    | 368         | 456         | 2,444       | 1,842       | 8           | 88          |
| Normalized distribution            | 314         | 928         | 2,500       | 1,300       | 6           | 158         |
| Spawning survey live fish observed | 33          | 172         | 99          | 283         | 38          | 33          |

#### DIDSON

Cross Section of Redwood Creek DIDSON Site and Occurences of Fish (below 500 cfs)



<----- East West ----->

## Temporal Migration in Redwood Creek, Nov. 2009 - Jan. 2010



#### Relating Redd Counts to Escapement



Data source: Gallagher et al. (2010) NAJFM 30:1086-1097.



#### Correct classification of redds



# Positive association of redds with fish species

Species associated with redds

Avg 28.7 + 8.0%

Range 3 – 63%



#### Conclusions

- There is uncertainty in escapement estimates from both redd counts and DIDSON.
  - Modeling required in both methods.
  - Weather can limit both methods, but more so for redd surveys.
- DIDSON can produce reliable escapement estimates for species.
- DIDSON can be cost effective.

#### Discussion and Questions